Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1774$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (3,16,12,8)(4,15,11,7)(5,6), (1,2)(3,8,12,15)(4,7,11,16)(5,6), (1,15,9,7)(2,16,10,8)(3,6)(4,5)(11,13)(12,14) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$ 32: $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T76 x 2, 16T79, 16T146 x 2 128: $C_2 \wr C_2\wr C_2$ x 4, 16T235 x 2, 16T240, 32T1151 x 2 256: 16T478, 16T482 x 2, 16T532, 16T537, 16T542 x 2 512: 32T12279, 32T12349 x 2 1024: 16T1178 2048: 32T159727 4096: 16T1589 8192: 32T519870 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T1774 x 15, 16T1782 x 16, 32T723833 x 8, 32T723834 x 8, 32T723835 x 8, 32T723836 x 8, 32T723837 x 8, 32T723838 x 8, 32T723839 x 8, 32T723840 x 8, 32T723841 x 8, 32T723842 x 8, 32T723843 x 8, 32T723844 x 8, 32T723845 x 8, 32T723846 x 8, 32T723847 x 8, 32T723848 x 8, 32T723849 x 8, 32T723850 x 8, 32T723851 x 8, 32T723852 x 8, 32T723853 x 8, 32T723854 x 8, 32T723855 x 8, 32T723856 x 16, 32T723857 x 8, 32T723858 x 8, 32T723859 x 8, 32T723860 x 8, 32T723861 x 8, 32T723862 x 8, 32T723863 x 8, 32T724078 x 8, 32T724079 x 8, 32T724080 x 8, 32T724081 x 8, 32T724082 x 8, 32T724083 x 8, 32T724084 x 8, 32T724085 x 8, 32T724086 x 8, 32T724087 x 8, 32T724088 x 8, 32T724089 x 8, 32T724090 x 8, 32T724091 x 8, 32T724092 x 8, 32T724093 x 8, 32T724094 x 8, 32T724095 x 8, 32T724096 x 8, 32T724097 x 8, 32T724098 x 8, 32T724099 x 8, 32T724100 x 8, 32T724101 x 8, 32T724102 x 8, 32T724103 x 8, 32T724104 x 8, 32T724105 x 8, 32T724106 x 8, 32T724107 x 8, 32T727430 x 8, 32T728359 x 8, 32T743938 x 4, 32T744295 x 4, 32T744317 x 4, 32T744471 x 4, 32T744761 x 4, 32T744794 x 4, 32T864191 x 4, 32T864193 x 4, 32T873932 x 4, 32T874540 x 4, 32T968054 x 4, 32T968176 x 4, 32T1038014 x 4, 32T1038027 x 4, 32T1061680 x 4, 32T1061683 x 4, 32T1099811 x 4, 32T1099814 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 130 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $16384=2^{14}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |