Properties

Label 16T1765
Order \(12288\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1765$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,6,14)(2,12,5,13)(3,15,8,9)(4,16,7,10), (1,8,4)(2,7,3)(9,16,14,10,15,13)(11,12), (1,6,8,4)(2,5,7,3)(9,12)(10,11)(13,14)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  $V_4^2:(S_3\times C_2)$ x 6, 12T100
768:  16T1068 x 3
3072:  16T1526
6144:  32T398944

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 8: $V_4^2:(S_3\times C_2)$

Low degree siblings

16T1765 x 5, 32T720633 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 74 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $12288=2^{12} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.