Properties

Label 16T1764
Order \(12288\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1764$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,2,3)(5,16,7,14)(6,15,8,13)(9,11)(10,12), (1,12,14,3,10,16)(2,11,13,4,9,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$
48:  $S_4\times C_2$, $\textrm{GL(2,3)}$ x 2
96:  16T188
192:  $V_4^2:(S_3\times C_2)$
384:  $C_2 \wr S_4$ x 2, 24T819
768:  16T1066
1536:  32T97075
6144:  32T397259

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $C_2 \wr S_4$

Low degree siblings

16T1761 x 8, 16T1764 x 7, 32T720618 x 4, 32T720619 x 4, 32T720620 x 4, 32T720621 x 4, 32T720622 x 8, 32T720623 x 4, 32T720624 x 4, 32T720627 x 4, 32T720628 x 4, 32T720629 x 4, 32T720630 x 4, 32T720631 x 4, 32T720632 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $12288=2^{12} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.