Properties

Label 16T1758
Order \(12288\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1758$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,12,4,15,10)(2,14,11,3,16,9)(7,8), (1,6,9,15,4,7,12,14,2,5,10,16,3,8,11,13), (5,14,11,8,16,10,6,13,12,7,15,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $D_{4}$ x 2, $C_2^3$
12:  $D_{6}$ x 3
16:  $D_4\times C_2$
24:  $S_4$, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 3, 12T28
96:  12T48
192:  $V_4^2:(S_3\times C_2)$, 12T86
384:  $C_2 \wr S_4$ x 2, 12T136
768:  12T186, 16T1045, 16T1049
1536:  32T96912
3072:  24T7075
6144:  24T9145

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $C_2 \wr S_4$

Low degree siblings

16T1758 x 15, 32T720590 x 8, 32T720591 x 8, 32T720592 x 8, 32T720593 x 8, 32T720594 x 8, 32T720595 x 8, 32T720596 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 93 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $12288=2^{12} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.