Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $175$ | |
| Group : | $D_4.D_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,8,10,13,2,7,9,14)(3,5,11,16,4,6,12,15), (1,15)(2,16)(3,13)(4,14)(5,9)(6,10)(7,12)(8,11), (1,4,2,3)(5,14)(6,13)(7,15)(8,16)(9,11,10,12) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$
Low degree siblings
16T138, 16T145 x 2, 16T175, 32T151, 32T160 x 2, 32T161 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,13, 6,14)( 7,16, 8,15)( 9,11,10,12)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 3, 2, 4)( 5,13)( 6,14)( 7,16)( 8,15)( 9,12,10,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 4, 2, 3)( 5,13)( 6,14)( 7,16)( 8,15)( 9,11,10,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,15,10,16)(11,14,12,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,16,10,15)(11,13,12,14)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 9,13, 2, 8,10,14)( 3, 6,12,16, 4, 5,11,15)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7, 9,14, 2, 8,10,13)( 3, 6,12,15, 4, 5,11,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,15)( 6,16)( 7,13)( 8,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 9, 2,10)( 3,12, 4,11)( 5,16, 6,15)( 7,14, 8,13)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 136] |
| Character table: |
2 6 4 5 6 3 4 4 4 4 4 4 3 3 4 5 5
1a 2a 2b 2c 4a 4b 4c 2d 2e 4d 4e 8a 8b 2f 4f 4g
2P 1a 1a 1a 1a 2c 2b 2b 1a 1a 2c 2c 4f 4g 1a 2c 2c
3P 1a 2a 2b 2c 4a 4c 4b 2d 2e 4d 4e 8a 8b 2f 4f 4g
5P 1a 2a 2b 2c 4a 4b 4c 2d 2e 4d 4e 8a 8b 2f 4f 4g
7P 1a 2a 2b 2c 4a 4c 4b 2d 2e 4d 4e 8a 8b 2f 4f 4g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1
X.3 1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1 -1 1 1
X.4 1 -1 1 1 1 -1 -1 -1 1 -1 1 1 -1 -1 1 1
X.5 1 -1 1 1 1 -1 -1 1 -1 1 -1 -1 1 -1 1 1
X.6 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
X.7 1 1 1 1 -1 -1 -1 1 1 1 1 -1 -1 1 1 1
X.8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1
X.9 2 -2 2 2 . . . . . . . . . 2 -2 -2
X.10 2 2 2 2 . . . . . . . . . -2 -2 -2
X.11 2 . -2 2 . . . -2 . 2 . . . . -2 2
X.12 2 . -2 2 . . . . -2 . 2 . . . 2 -2
X.13 2 . -2 2 . . . . 2 . -2 . . . 2 -2
X.14 2 . -2 2 . . . 2 . -2 . . . . -2 2
X.15 4 . . -4 . A -A . . . . . . . . .
X.16 4 . . -4 . -A A . . . . . . . . .
A = -2*E(4)
= -2*Sqrt(-1) = -2i
|