Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1741$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $7$ | |
| Generators: | (1,3,2,4)(5,7)(6,8)(9,11,14,16)(10,12,13,15), (1,9,4,12,6,13,8,15,2,10,3,11,5,14,7,16), (1,11)(2,12)(3,13,8,10)(4,14,7,9)(5,16,6,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 12, $C_2^3$ 16: $D_4\times C_2$ x 6, $Q_8:C_2$ 32: $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$ 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 32T320 128: $C_2 \wr C_2\wr C_2$ x 4, 16T342 x 4, 16T350 x 3 256: 32T5807 x 4, 32T6030 512: 16T956, 16T969 x 2 1024: 32T41928 2048: 16T1439 4096: 32T316849 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_2 \wr C_2\wr C_2$
Low degree siblings
16T1741 x 15, 32T400458 x 8, 32T400459 x 8, 32T400460 x 8, 32T400461 x 8, 32T400462 x 8, 32T400463 x 8, 32T400464 x 8, 32T400465 x 8, 32T400466 x 8, 32T400467 x 8, 32T400468 x 8, 32T400469 x 8, 32T400470 x 8, 32T400471 x 8, 32T400472 x 8, 32T408442 x 8, 32T408452 x 8, 32T430886 x 4, 32T430929 x 4, 32T431002 x 4, 32T549304 x 4, 32T549376 x 4, 32T549457 x 4, 32T549561 x 4, 32T549564 x 4, 32T549606 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 95 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $8192=2^{13}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |