Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1722$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,9,16,8,5,14,4,12)(2,10,15,7,6,13,3,11), (1,11,2,12)(3,13,4,14)(5,8)(6,7)(9,15)(10,16), (1,5,2,6)(3,16,4,15)(7,14,12,10,8,13,11,9) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ 32: $C_4\wr C_2$ x 4, $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37 64: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T111 x 2, 32T239 128: $C_2 \wr C_2\wr C_2$ x 2, 16T208, 16T211, 16T222, 16T345 x 2 256: 32T3766, 32T4357 x 2 512: 16T876 1024: 32T58388 2048: 16T1361 4096: 32T316392 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $C_4\wr C_2$
Low degree siblings
16T1702 x 8, 16T1722 x 7, 32T399628 x 4, 32T399629 x 4, 32T399630 x 4, 32T399631 x 4, 32T399632 x 4, 32T399633 x 4, 32T399634 x 4, 32T399635 x 8, 32T399636 x 4, 32T399637 x 4, 32T399638 x 4, 32T399639 x 4, 32T399640 x 4, 32T399641 x 4, 32T399642 x 4, 32T400072 x 8, 32T400073 x 8, 32T400074 x 4, 32T400075 x 4, 32T400076 x 4, 32T400077 x 4, 32T400078 x 8, 32T400079 x 8, 32T400080 x 4, 32T400081 x 4, 32T400082 x 4, 32T400083 x 4, 32T400084 x 4, 32T400085 x 4, 32T400086 x 8, 32T400087 x 8, 32T400088 x 8, 32T400089 x 4, 32T400090 x 4, 32T400091 x 4, 32T400092 x 8, 32T400093 x 4, 32T408495 x 4, 32T433239 x 2, 32T433314 x 2, 32T433317 x 4, 32T433318 x 2, 32T433323 x 2, 32T540768 x 2, 32T540791 x 2, 32T547845 x 2, 32T549466 x 2, 32T549589 x 2, 32T549592 x 2, 32T549593 x 4, 32T702758 x 4, 32T715948 x 2, 32T715949 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 104 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $8192=2^{13}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |