Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $172$ | |
| Group : | $C_2\wr C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (1,3,5,16,10,12,14,7)(2,4,6,15,9,11,13,8), (1,10)(2,9)(3,15,12,8)(4,16,11,7) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 32: $C_2^3 : C_4 $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
8T27 x 2, 8T28 x 2, 16T130, 16T157 x 2, 16T158 x 2, 16T159 x 2, 16T166, 16T170, 16T171, 32T138 x 2, 32T139, 32T170, 32T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $8$ | $4$ | $( 3, 8,12,15)( 4, 7,11,16)( 5,14)( 6,13)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 7)( 4, 8)( 5, 6)( 9,10)(11,15)(12,16)(13,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5, 7,13,15)( 6, 8,14,16)( 9,11,10,12)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 5,16,10,12,14, 7)( 2, 4, 6,15, 9,11,13, 8)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5,15,13, 7)( 6,16,14, 8)( 9,12,10,11)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 4, 5, 8,10,11,14,15)( 2, 3, 6, 7, 9,12,13,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3,11)( 4,12)( 7,15)( 8,16)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,14)(10,13)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 32] |
| Character table: |
2 6 3 5 4 4 3 3 3 3 4 4 4 6
1a 4a 2a 2b 2c 4b 8a 4c 8b 4d 2d 2e 2f
2P 1a 2a 1a 1a 1a 2b 4d 2b 4d 2f 1a 1a 1a
3P 1a 4a 2a 2b 2c 4c 8b 4b 8a 4d 2d 2e 2f
5P 1a 4a 2a 2b 2c 4b 8a 4c 8b 4d 2d 2e 2f
7P 1a 4a 2a 2b 2c 4c 8b 4b 8a 4d 2d 2e 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 1
X.3 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 1
X.4 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
X.5 1 -1 1 -1 1 A -A -A A -1 1 1 1
X.6 1 -1 1 -1 1 -A A A -A -1 1 1 1
X.7 1 1 1 -1 -1 A A -A -A -1 -1 1 1
X.8 1 1 1 -1 -1 -A -A A A -1 -1 1 1
X.9 2 . 2 -2 . . . . . 2 . -2 2
X.10 2 . 2 2 . . . . . -2 . -2 2
X.11 4 . -4 . . . . . . . . . 4
X.12 4 . . . -2 . . . . . 2 . -4
X.13 4 . . . 2 . . . . . -2 . -4
A = -E(4)
= -Sqrt(-1) = -i
|