Properties

Label 16T1719
Order \(8192\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1719$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,10,2,9)(3,11)(4,12)(5,13)(6,14)(7,15,8,16), (1,15,2,16)(3,5,4,6)(7,9)(8,10)(11,13)(12,14), (3,4)(7,9)(8,10)(11,13)(12,14)(15,16), (1,2)(3,4)(5,6)(7,11)(8,12)(9,13)(10,14), (15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 16T105 x 7
128:  $C_2 \wr C_2\wr C_2$ x 12, 16T241 x 3, 16T245 x 3, 16T325
256:  16T509 x 6, 32T4223 x 3
512:  16T819 x 3, 16T907, 16T919 x 3
1024:  32T40151 x 3
2048:  16T1340
4096:  32T317640

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$ x 3

Degree 8: $C_2^2 \wr C_2$

Low degree siblings

16T1719 x 15, 16T1728 x 48, 32T399975 x 48, 32T399976 x 24, 32T399977 x 48, 32T399978 x 48, 32T399979 x 24, 32T399980 x 24, 32T399981 x 24, 32T399982 x 24, 32T399983 x 24, 32T399984 x 24, 32T399985 x 24, 32T399986 x 24, 32T399987 x 24, 32T399988 x 48, 32T399989 x 48, 32T399990 x 24, 32T399991 x 8, 32T399992 x 8, 32T399993 x 8, 32T400215 x 24, 32T400216 x 48, 32T400217 x 24, 32T400218 x 24, 32T400219 x 24, 32T400220 x 48, 32T400221 x 48, 32T400222 x 24, 32T400223 x 24, 32T400224 x 24, 32T400225 x 48, 32T400226 x 24, 32T400227 x 48, 32T400228 x 24, 32T400229 x 24, 32T400230 x 24, 32T400231 x 48, 32T400232 x 24, 32T400233 x 48, 32T400234 x 24, 32T400235 x 24, 32T400236 x 48, 32T405528 x 8, 32T431383 x 12, 32T431523 x 12, 32T431732 x 24, 32T431871 x 24, 32T519524 x 24, 32T522319 x 12, 32T549500 x 12, 32T549570 x 12, 32T640154 x 24, 32T715889 x 12

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 152 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $8192=2^{13}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.