Properties

Label 16T1701
Order \(8192\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1701$
Parity:  $1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,2)(7,8), (1,10)(2,9)(3,12,4,11)(5,13,6,14)(7,15)(8,16), (7,12,8,11)(9,14,10,13), (1,2)(3,16)(4,15)(7,10,11,14,8,9,12,13), (1,15)(2,16)(3,6,4,5)(7,12)(8,11)(9,14,10,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 14, 16T105 x 7
128:  16T241 x 7, 16T245 x 7, 16T325
256:  32T4223 x 7
512:  16T907 x 7
1024:  64T?
2048:  16T1352
4096:  32T314244

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1701 x 15, 32T399613 x 8, 32T399614 x 8, 32T399615 x 8, 32T399616 x 8, 32T399617 x 8, 32T399618 x 8, 32T399619 x 8, 32T399620 x 8, 32T399621 x 8, 32T399622 x 8, 32T399623 x 8, 32T399624 x 8, 32T399625 x 8, 32T399626 x 8, 32T399627 x 8, 32T405329 x 8, 32T405334 x 8, 32T421949 x 4, 32T421955 x 4, 32T422007 x 4, 32T545771 x 4, 32T545774 x 4, 32T644649 x 4, 32T644691 x 4, 32T665910 x 4, 32T665924 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 119 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $8192=2^{13}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.