Properties

Label 16T1683
Order \(6144\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1683$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,13,8,2,9,14,7)(3,12,16,6,4,11,15,5), (1,7,9,2,8,10)(3,6,12,4,5,11)(13,15)(14,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
8:  $D_{4}$
12:  $D_{6}$
24:  $S_4$, $(C_6\times C_2):C_2$
48:  $S_4\times C_2$
96:  12T49
192:  $V_4^2:(S_3\times C_2)$
384:  $C_2 \wr S_4$, 12T145, 16T745 x 2, 16T755
768:  32T34844
1536:  16T1315
3072:  24T5585

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $C_2 \wr S_4$

Low degree siblings

16T1676 x 4, 16T1683 x 3, 32T397460 x 4, 32T397461 x 2, 32T397462 x 2, 32T397463 x 2, 32T397464 x 2, 32T397465 x 2, 32T397466 x 2, 32T397485 x 2, 32T397486 x 2, 32T397725 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 60 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6144=2^{11} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.