Properties

Label 16T1675
Order \(6144\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1675$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,5,15,4,6,16)(7,14,9)(8,13,10)(11,12), (1,10,2,9)(3,11,4,12)(5,14)(6,13)(7,15,8,16), (1,15,3,5)(2,16,4,6)(7,11,14,10,8,12,13,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
8:  $D_{4}$
12:  $D_{6}$
24:  $S_4$, $D_{12}$
48:  $S_4\times C_2$
96:  12T54
192:  $V_4^2:(S_3\times C_2)$
384:  $C_2 \wr S_4$, 12T152, 16T753
768:  32T34843
1536:  16T1313
3072:  24T5962

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $S_4$

Degree 8: $S_4\times C_2$

Low degree siblings

16T1675 x 3, 16T1682 x 4, 32T397453 x 2, 32T397454 x 2, 32T397455 x 4, 32T397456 x 2, 32T397457 x 2, 32T397458 x 2, 32T397459 x 2, 32T397483 x 2, 32T397484 x 2, 32T397757 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6144=2^{11} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.