Properties

Label 16T1674
Order \(6144\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1674$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,9,3,16,11)(2,13,10,4,15,12)(7,8), (1,5,15,10,4,7,14,11,2,6,16,9,3,8,13,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
8:  $D_{4}$
12:  $D_{6}$
24:  $S_4$, $(C_6\times C_2):C_2$
48:  $S_4\times C_2$
96:  12T49
192:  $V_4^2:(S_3\times C_2)$
384:  $C_2 \wr S_4$, 12T145, 16T755
768:  32T34844
1536:  24T4570
3072:  24T6671

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $C_2 \wr S_4$

Low degree siblings

16T1674 x 7, 32T397450 x 4, 32T397451 x 4, 32T397452 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 54 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6144=2^{11} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.