Properties

Label 16T1666
Order \(6144\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1666$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,13,4,6,16)(2,8,14,3,5,15)(9,10), (1,15,9,5,3,13,11,8,2,16,10,6,4,14,12,7), (1,8,15,10,2,7,16,9)(3,5,14,12,4,6,13,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 3
96:  12T48
192:  $V_4^2:(S_3\times C_2)$
384:  $C_2 \wr S_4$ x 2, 12T136
768:  16T1045
1536:  24T4549
3072:  24T6624

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $C_2 \wr S_4$

Low degree siblings

16T1666 x 7, 32T397428 x 4, 32T397429 x 8, 32T397430 x 4, 32T397431 x 8, 32T397432 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6144=2^{11} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.