Properties

Label 16T1665
Order \(6144\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1665$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11,2,12)(3,7)(4,8)(5,9,6,10)(13,16)(14,15), (1,3,15,2,4,16)(7,8)(9,14,12)(10,13,11), (1,8,4,11,6,9,2,7,3,12,5,10)(13,15,14,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
6:  $S_3$
8:  $C_2^3$
12:  $D_{6}$ x 3
24:  $S_4$ x 3, $S_3 \times C_2^2$
48:  $S_4\times C_2$ x 9
96:  $V_4^2:S_3$, 12T48 x 3
192:  $C_2^3:S_4$ x 4, 12T100 x 3
384:  12T139, 16T747 x 6
768:  32T34907
1536:  16T1301
3072:  24T5981

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $S_4$

Degree 8: $S_4\times C_2$

Low degree siblings

16T1659 x 4, 16T1665 x 3, 32T397402 x 4, 32T397403 x 4, 32T397404 x 2, 32T397405 x 4, 32T397406 x 2, 32T397422 x 2, 32T397423 x 2, 32T397424 x 2, 32T397425 x 2, 32T397426 x 2, 32T397427 x 2, 32T397728 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 78 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6144=2^{11} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.