Properties

Label 16T1656
Order \(6144\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1656$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,8,2,15,7)(3,13,5)(4,14,6)(11,12), (1,4,2,3)(5,12,16)(6,11,15)(7,9,13,8,10,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $C_6$ x 3
8:  $D_{4}$
12:  $A_4$, $C_6\times C_2$
24:  $A_4\times C_2$ x 3, $D_4 \times C_3$
48:  $C_2^2 \times A_4$
96:  $C_2^4:C_6$, 12T51
192:  $C_2\wr A_4$ x 2, 12T87
384:  12T134, 16T716, 16T722
768:  32T34728
1536:  16T1299
3072:  24T5579

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $A_4$

Degree 8: $C_2\wr A_4$

Low degree siblings

16T1656 x 3, 16T1658 x 4, 32T397390 x 4, 32T397391 x 2, 32T397392 x 2, 32T397396 x 2, 32T397397 x 2, 32T397398 x 2, 32T397399 x 2, 32T397400 x 2, 32T397401 x 2, 32T397745 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 69 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $6144=2^{11} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.