Properties

Label 16T1643
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1643$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $8$
Generators:  (1,4,9,12)(2,3,10,11)(5,16,13,7,6,15,14,8), (1,3,10,11)(2,4,9,12)(5,15,13,7)(6,16,14,8), (1,4,6,8,9,11,14,16)(2,3,5,7,10,12,13,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $QD_{16}$ x 2, $D_4\times C_2$ x 3
32:  $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T48
64:  $(((C_4 \times C_2): C_2):C_2):C_2$, 16T138, 16T155
128:  $C_2 \wr C_2\wr C_2$ x 2, 32T1557
256:  16T700
512:  32T16861
1024:  16T1252
2048:  32T104606

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $QD_{16}$

Low degree siblings

16T1637 x 16, 16T1643 x 15, 32T208119 x 16, 32T208120 x 8, 32T208121 x 8, 32T208122 x 8, 32T208123 x 8, 32T208124 x 8, 32T208125 x 8, 32T208126 x 8, 32T208127 x 8, 32T208128 x 8, 32T208129 x 8, 32T208130 x 8, 32T208131 x 8, 32T208132 x 8, 32T208133 x 8, 32T208212 x 8, 32T208213 x 32, 32T208214 x 8, 32T208215 x 8, 32T208216 x 8, 32T208217 x 32, 32T208218 x 8, 32T208219 x 8, 32T208220 x 32, 32T208221 x 32, 32T208222 x 8, 32T208223 x 8, 32T208224 x 8, 32T208225 x 8, 32T208226 x 8, 32T208227 x 8, 32T208228 x 8, 32T208229 x 8, 32T221516 x 8, 32T221517 x 8, 32T224705 x 8, 32T249074 x 4, 32T249943 x 4, 32T313972 x 4, 32T314024 x 4, 32T327111 x 4, 32T396544 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 64 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.