Properties

Label 16T1642
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1642$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $8$
Generators:  (1,16)(2,15)(3,14)(4,13)(5,6)(9,12,10,11), (1,3,2,4)(5,7,6,8)(9,12,10,11), (1,10,2,9)(3,12,4,11)(5,15)(6,16)(7,14)(8,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_{8}$ x 2, $D_4\times C_2$ x 3
32:  $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T29
64:  $(C_4^2 : C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T126
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T409
256:  16T689
512:  16T962
1024:  16T1271
2048:  16T1446

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1642 x 31, 32T208197 x 16, 32T208198 x 16, 32T208199 x 16, 32T208200 x 16, 32T208201 x 16, 32T208202 x 16, 32T208203 x 16, 32T208204 x 16, 32T208205 x 16, 32T208206 x 16, 32T208207 x 16, 32T208208 x 16, 32T208209 x 16, 32T208210 x 16, 32T208211 x 16, 32T224368 x 16, 32T249758 x 8, 32T313919 x 8, 32T314047 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 73 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.