Properties

Label 16T1638
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1638$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $8$
Generators:  (1,3,6,8,9,11,14,16,2,4,5,7,10,12,13,15), (9,10)(13,14)(15,16), (1,13)(2,14)(3,11)(4,12)(5,10,6,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_{8}$ x 2, $D_4\times C_2$ x 3
32:  $Z_8 : Z_8^\times$, $C_2^2 \wr C_2$, 16T29
64:  $(C_4^2 : C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T126
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T409
256:  16T689
512:  16T962
1024:  16T1253
2048:  16T1459

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $D_{8}$

Low degree siblings

16T1638 x 15, 16T1646 x 16, 32T208134 x 8, 32T208135 x 32, 32T208136 x 32, 32T208137 x 8, 32T208138 x 8, 32T208139 x 16, 32T208140 x 32, 32T208141 x 8, 32T208142 x 32, 32T208143 x 8, 32T208144 x 8, 32T208145 x 8, 32T208146 x 8, 32T208147 x 8, 32T208148 x 8, 32T208149 x 8, 32T208150 x 8, 32T208151 x 8, 32T208152 x 8, 32T208259 x 8, 32T208260 x 8, 32T208261 x 8, 32T208262 x 8, 32T208263 x 8, 32T208264 x 8, 32T208265 x 8, 32T208266 x 8, 32T208267 x 8, 32T208268 x 8, 32T208269 x 8, 32T208270 x 8, 32T208271 x 8, 32T208272 x 8, 32T212279 x 16, 32T212281 x 16, 32T221501 x 8, 32T221509 x 8, 32T224668 x 8, 32T248907 x 4, 32T249794 x 4, 32T313907 x 4, 32T314021 x 4, 32T326971 x 4, 32T396568 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 73 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.