Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $163$ | |
| Group : | $C_2^2.SD_{16}$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,2)(5,6)(7,14,11,9)(8,13,12,10), (1,7,4,9,5,12,15,13)(2,8,3,10,6,11,16,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $D_{8}$, $QD_{16}$, $C_2^2:C_4$ 32: $C_4\wr C_2$, $C_2^3 : C_4 $, 16T26 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$
Degree 8: $D_{8}$, $C_4\wr C_2$, $C_2^3 : C_4 $
Low degree siblings
16T163, 32T174, 32T283, 32T319Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 4)( 7,10,11,13)( 8, 9,12,14)(15,16)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $4$ | $4$ | $( 3, 4)( 7,13,11,10)( 8,14,12, 9)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,12)( 8,11)( 9,13)(10,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 5,16)( 2, 4, 6,15)( 7,10,12,14)( 8, 9,11,13)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 5,16)( 2, 4, 6,15)( 7,13,12, 9)( 8,14,11,10)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 3, 6,15)( 2, 4, 5,16)( 7,12)( 8,11)( 9,14)(10,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $4$ | $4$ | $( 1, 5)( 2, 6)( 3,15)( 4,16)( 7,14,11, 9)( 8,13,12,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 6)( 2, 5)( 3,15)( 4,16)( 7,11)( 8,12)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $8$ | $2$ | $( 1, 7)( 2, 8)( 3, 9)( 4,10)( 5,12)( 6,11)(13,16)(14,15)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 6,11)( 2, 8, 5,12)( 3, 9,15,14)( 4,10,16,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7, 4, 9, 5,12,15,13)( 2, 8, 3,10, 6,11,16,14)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 7,16,14, 5,12, 3,10)( 2, 8,15,13, 6,11, 4, 9)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8, 4,10, 5,11,15,14)( 2, 7, 3, 9, 6,12,16,13)$ |
| $ 8, 8 $ | $4$ | $8$ | $( 1, 8,16,13, 5,11, 3, 9)( 2, 7,15,14, 6,12, 4,10)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1,15, 5, 4)( 2,16, 6, 3)( 7,13,12, 9)( 8,14,11,10)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 8] |
| Character table: |
2 6 5 4 4 6 5 5 4 4 4 6 6 3 3 4 4 4 4 5
1a 2a 4a 4b 2b 2c 4c 4d 4e 4f 2d 2e 2f 4g 8a 8b 8c 8d 4h
2P 1a 1a 2a 2a 1a 1a 2d 2d 2a 2a 1a 1a 1a 2e 4c 4h 4c 4h 2d
3P 1a 2a 4b 4a 2b 2c 4h 4d 4f 4e 2d 2e 2f 4g 8d 8c 8b 8a 4c
5P 1a 2a 4a 4b 2b 2c 4c 4d 4e 4f 2d 2e 2f 4g 8c 8d 8a 8b 4h
7P 1a 2a 4b 4a 2b 2c 4h 4d 4f 4e 2d 2e 2f 4g 8b 8a 8d 8c 4c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1 1 1 1
X.3 1 1 -1 -1 1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1
X.4 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
X.5 1 -1 A -A 1 -1 -1 1 -A A 1 1 -1 1 -A A -A A -1
X.6 1 -1 -A A 1 -1 -1 1 A -A 1 1 -1 1 A -A A -A -1
X.7 1 -1 A -A 1 -1 -1 1 -A A 1 1 1 -1 A -A A -A -1
X.8 1 -1 -A A 1 -1 -1 1 A -A 1 1 1 -1 -A A -A A -1
X.9 2 2 . . 2 2 -2 -2 . . 2 2 . . . . . . -2
X.10 2 -2 . . 2 -2 2 -2 . . 2 2 . . . . . . 2
X.11 2 -2 . . -2 2 . . . . -2 2 . . D -D -D D .
X.12 2 -2 . . -2 2 . . . . -2 2 . . -D D D -D .
X.13 2 2 . . -2 -2 . . . . -2 2 . . E E -E -E .
X.14 2 2 . . -2 -2 . . . . -2 2 . . -E -E E E .
X.15 2 . B /B 2 . C . -/B -B -2 -2 . . . . . . -C
X.16 2 . /B B 2 . -C . -B -/B -2 -2 . . . . . . C
X.17 2 . -/B -B 2 . -C . B /B -2 -2 . . . . . . C
X.18 2 . -B -/B 2 . C . /B B -2 -2 . . . . . . -C
X.19 4 . . . -4 . . . . . 4 -4 . . . . . . .
A = -E(4)
= -Sqrt(-1) = -i
B = -1-E(4)
= -1-Sqrt(-1) = -1-i
C = 2*E(4)
= 2*Sqrt(-1) = 2i
D = -E(8)-E(8)^3
= -Sqrt(-2) = -i2
E = -E(8)+E(8)^3
= -Sqrt(2) = -r2
|