Properties

Label 16T1606
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1606$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $7$
Generators:  (1,14,5,10,2,13,6,9)(3,8,15,11,4,7,16,12), (1,5)(2,6)(3,15,4,16)(7,8)(11,12)(13,14), (1,5)(2,6)(3,15)(4,16)(7,14,12,10,8,13,11,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_4\wr C_2$ x 2, $C_2^2 \wr C_2$ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $(C_4^2 : C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T79, 16T106, 16T111, 16T138, 16T146
128:  32T1151, 32T1153, 32T1154
256:  16T482 x 2, 16T500
512:  32T13142
1024:  16T1141
2048:  32T134366

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_4\wr C_2$

Low degree siblings

16T1575 x 4, 16T1606 x 3, 32T207273 x 2, 32T207274 x 2, 32T207275 x 4, 32T207276 x 2, 32T207277 x 2, 32T207278 x 2, 32T207279 x 2, 32T207751 x 4, 32T207752 x 4, 32T207753 x 4, 32T207754 x 4, 32T207755 x 2, 32T207756 x 2, 32T207757 x 2, 32T207758 x 2, 32T207759 x 2, 32T207760 x 2, 32T220250 x 2, 32T220251 x 2, 32T250313 x 2, 32T250354, 32T250362, 32T250375, 32T250383, 32T327162, 32T327167, 32T327811, 32T327815 x 2, 32T327824, 32T327846, 32T327869, 32T377711 x 2, 32T389723, 32T389724

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 73 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.