Properties

Label 16T1605
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1605$
Parity:  $1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,7,2,8)(3,6,4,5)(9,10)(11,12), (1,2)(3,4), (1,10,3,11,2,9,4,12)(5,13,7,15,6,14,8,16), (1,5)(2,6)(3,4)(9,13,10,14), (9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 36, $C_2^3$ x 15
16:  $D_4\times C_2$ x 54, $C_2^4$
32:  $C_2^2 \wr C_2$ x 24, $C_2^3 : D_4 $ x 6, $C_2^2 \times D_4$ x 9
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 24, 16T87 x 9, 16T98 x 2, 16T105 x 6, 16T109 x 18
128:  16T245 x 12, 32T1237 x 9, 32T1241 x 6
256:  16T531 x 18, 64T?
512:  32T13330 x 3
1024:  16T1152
2048:  32T183808

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1605 x 15, 32T207740 x 8, 32T207741 x 16, 32T207742 x 8, 32T207743 x 8, 32T207744 x 16, 32T207745 x 8, 32T207746 x 8, 32T207747 x 16, 32T207748 x 8, 32T207749 x 8, 32T207750 x 16, 32T212804 x 8, 32T212806 x 8, 32T212812 x 16, 32T245696 x 4, 32T245719 x 8, 32T300179 x 8, 32T327287 x 4, 32T327307 x 4, 32T374964 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 124 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.