Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1584$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $8$ | |
| Generators: | (1,13,3,12)(2,14,4,11)(5,10,7,15,6,9,8,16), (1,9,4,11,6,14,7,16,2,10,3,12,5,13,8,15), (1,11,7,14,2,12,8,13)(3,10,5,16)(4,9,6,15) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_4$ x 4, $C_2^2$ x 7 8: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ 16: $C_8:C_2$ x 4, $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ 32: $(C_8:C_2):C_2$ x 2, $C_2^3 : C_4 $ x 2, $C_2 \times (C_8:C_2)$ x 2, $C_2 \times (C_2^2:C_4)$ 64: $((C_8 : C_2):C_2):C_2$ x 4, 16T72, 16T76, 16T95 128: 16T227 x 2, 16T252 256: 16T485 512: 32T22852 1024: 16T1134 2048: 32T128397 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $((C_8 : C_2):C_2):C_2$
Low degree siblings
16T1584 x 15, 16T1604 x 16, 32T207414 x 8, 32T207415 x 16, 32T207416 x 16, 32T207417 x 16, 32T207418 x 8, 32T207419 x 8, 32T207420 x 16, 32T207421 x 8, 32T207422 x 16, 32T207423 x 16, 32T207424 x 8, 32T207425 x 16, 32T207426 x 8, 32T207427 x 8, 32T207428 x 16, 32T207429 x 16, 32T207430 x 8, 32T207431 x 8, 32T207432 x 8, 32T207433 x 8, 32T207434 x 8, 32T207435 x 8, 32T207436 x 8, 32T207706 x 8, 32T207707 x 32, 32T207708 x 16, 32T207709 x 16, 32T207710 x 16, 32T207711 x 8, 32T207712 x 32, 32T207713 x 16, 32T207714 x 8, 32T207715 x 16, 32T207716 x 8, 32T207717 x 16, 32T207718 x 16, 32T207719 x 32, 32T207720 x 16, 32T207721 x 32, 32T207722 x 8, 32T207723 x 16, 32T207724 x 8, 32T207725 x 16, 32T207726 x 8, 32T207727 x 16, 32T207728 x 16, 32T207729 x 16, 32T207730 x 16, 32T207731 x 8, 32T207732 x 8, 32T207733 x 8, 32T207734 x 8, 32T207735 x 16, 32T207736 x 16, 32T207737 x 8, 32T207738 x 8, 32T207739 x 8, 32T221217 x 8, 32T242706 x 4, 32T242822 x 4, 32T309802 x 4, 32T323743 x 4, 32T365379 x 4, 32T396479 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 73 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $4096=2^{12}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |