Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1581$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $6$ | |
| Generators: | (1,2)(7,8), (1,15)(2,16)(3,5,4,6)(7,12)(8,11)(9,14)(10,13), (1,10)(2,9)(3,12,4,11)(5,13,6,14)(7,15)(8,16), (7,9,8,10)(11,14)(12,13) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 15 4: $C_2^2$ x 35 8: $D_{4}$ x 20, $C_2^3$ x 15 16: $D_4\times C_2$ x 30, $C_2^4$ 32: $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5 64: $(C_4^2 : C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4 128: $C_2 \wr C_2\wr C_2$ x 4, 16T245 x 2, 16T265 x 2, 32T1237 256: 16T477 x 2, 16T509 x 2, 16T511, 16T531, 16T538 512: 32T12264 x 2, 32T12969 1024: 16T1177 2048: 32T128074 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $D_{4}$ x 3
Degree 8: $C_2^2 \wr C_2$
Low degree siblings
16T1556 x 8, 16T1581 x 7, 16T1624 x 16, 32T206997 x 4, 32T206998 x 8, 32T206999 x 4, 32T207000 x 4, 32T207001 x 8, 32T207002 x 4, 32T207003 x 8, 32T207004 x 8, 32T207005 x 4, 32T207006 x 8, 32T207007 x 4, 32T207354 x 16, 32T207355 x 8, 32T207356 x 8, 32T207357 x 8, 32T207358 x 4, 32T207359 x 4, 32T207360 x 8, 32T207361 x 8, 32T207362 x 8, 32T207363 x 4, 32T207364 x 8, 32T207365 x 8, 32T207366 x 8, 32T207367 x 8, 32T207368 x 8, 32T207369 x 4, 32T207370 x 4, 32T207371 x 4, 32T207976 x 8, 32T207977 x 8, 32T207978 x 8, 32T207979 x 8, 32T207980 x 8, 32T207981 x 8, 32T207982 x 8, 32T207983 x 8, 32T207984 x 8, 32T207985 x 8, 32T207986 x 8, 32T207987 x 8, 32T207988 x 8, 32T207989 x 8, 32T220700 x 4, 32T245907 x 2, 32T245925 x 2, 32T245963 x 4, 32T246016 x 4, 32T248524 x 4, 32T248666 x 4, 32T248687 x 4, 32T249553 x 4, 32T249556 x 4, 32T249583 x 4, 32T303602 x 4, 32T311747 x 4, 32T313917 x 4, 32T313946 x 4, 32T313947 x 4, 32T314049 x 4, 32T314144 x 4, 32T321570 x 2, 32T321593 x 4, 32T327812 x 2, 32T327831 x 2, 32T375035 x 4, 32T389465 x 2, 32T389475 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 94 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $4096=2^{12}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |