Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $158$ | |
| Group : | $C_2\wr C_4$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $4$ | |
| Generators: | (3,4)(7,15)(8,16)(11,12), (1,4,5,15)(2,3,6,16)(7,9,12,13)(8,10,11,14) | |
| $|\Aut(F/K)|$: | $8$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 32: $C_2^3 : C_4 $ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
8T27 x 2, 8T28 x 2, 16T130, 16T157 x 2, 16T158, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 7,15)( 8,16)(11,12)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)( 9,10)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,11,13,15)(10,12,14,16)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 3, 6, 8,10,12,13,15)( 2, 4, 5, 7, 9,11,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5)( 2, 6)( 3, 8,12,15)( 4, 7,11,16)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 8,12,15)( 4, 7,11,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 5, 3)( 2, 8, 6, 4)( 9,15,13,11)(10,16,14,12)$ |
| $ 8, 8 $ | $8$ | $8$ | $( 1, 7,13,11,10,16, 6, 4)( 2, 8,14,12, 9,15, 5, 3)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 32] |
| Character table: |
2 6 4 5 4 4 3 3 4 3 4 3 3 6
1a 2a 2b 2c 2d 4a 8a 2e 4b 4c 4d 8b 2f
2P 1a 1a 1a 1a 1a 2e 4c 1a 2b 2f 2e 4c 1a
3P 1a 2a 2b 2c 2d 4d 8b 2e 4b 4c 4a 8a 2f
5P 1a 2a 2b 2c 2d 4a 8a 2e 4b 4c 4d 8b 2f
7P 1a 2a 2b 2c 2d 4d 8b 2e 4b 4c 4a 8a 2f
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 1 -1 1 -1 1 1
X.3 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 1
X.4 1 1 1 1 1 -1 -1 1 1 1 -1 -1 1
X.5 1 -1 1 1 -1 A -A -1 1 -1 -A A 1
X.6 1 -1 1 1 -1 -A A -1 1 -1 A -A 1
X.7 1 1 1 1 1 A A -1 -1 -1 -A -A 1
X.8 1 1 1 1 1 -A -A -1 -1 -1 A A 1
X.9 2 . 2 -2 . . . -2 . 2 . . 2
X.10 2 . 2 -2 . . . 2 . -2 . . 2
X.11 4 . -4 . . . . . . . . . 4
X.12 4 -2 . . 2 . . . . . . . -4
X.13 4 2 . . -2 . . . . . . . -4
A = -E(4)
= -Sqrt(-1) = -i
|