Properties

Label 16T158
Order \(64\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes
Group: $C_2\wr C_4$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $158$
Group :  $C_2\wr C_4$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (3,4)(7,15)(8,16)(11,12), (1,4,5,15)(2,3,6,16)(7,9,12,13)(8,10,11,14)
$|\Aut(F/K)|$:  $8$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
32:  $C_2^3 : C_4 $

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$, $D_{4}$ x 2

Degree 8: $C_2^2:C_4$, $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

8T27 x 2, 8T28 x 2, 16T130, 16T157 x 2, 16T158, 16T159 x 2, 16T166, 16T170, 16T171, 16T172, 32T138 x 2, 32T139, 32T170, 32T176

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 3, 4)( 7,15)( 8,16)(11,12)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 3,12)( 4,11)( 7,16)( 8,15)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)(11,12)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 2)( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)( 9,10)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 3, 5, 7)( 2, 4, 6, 8)( 9,11,13,15)(10,12,14,16)$
$ 8, 8 $ $8$ $8$ $( 1, 3, 6, 8,10,12,13,15)( 2, 4, 5, 7, 9,11,14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $4$ $2$ $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$
$ 4, 4, 2, 2, 2, 2 $ $8$ $4$ $( 1, 5)( 2, 6)( 3, 8,12,15)( 4, 7,11,16)( 9,13)(10,14)$
$ 4, 4, 4, 4 $ $4$ $4$ $( 1, 6,10,13)( 2, 5, 9,14)( 3, 8,12,15)( 4, 7,11,16)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 7, 5, 3)( 2, 8, 6, 4)( 9,15,13,11)(10,16,14,12)$
$ 8, 8 $ $8$ $8$ $( 1, 7,13,11,10,16, 6, 4)( 2, 8,14,12, 9,15, 5, 3)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$

Group invariants

Order:  $64=2^{6}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [64, 32]
Character table:   
      2  6  4  5  4  4  3  3  4  3  4  3  3  6

        1a 2a 2b 2c 2d 4a 8a 2e 4b 4c 4d 8b 2f
     2P 1a 1a 1a 1a 1a 2e 4c 1a 2b 2f 2e 4c 1a
     3P 1a 2a 2b 2c 2d 4d 8b 2e 4b 4c 4a 8a 2f
     5P 1a 2a 2b 2c 2d 4a 8a 2e 4b 4c 4d 8b 2f
     7P 1a 2a 2b 2c 2d 4d 8b 2e 4b 4c 4a 8a 2f

X.1      1  1  1  1  1  1  1  1  1  1  1  1  1
X.2      1 -1  1  1 -1 -1  1  1 -1  1 -1  1  1
X.3      1 -1  1  1 -1  1 -1  1 -1  1  1 -1  1
X.4      1  1  1  1  1 -1 -1  1  1  1 -1 -1  1
X.5      1 -1  1  1 -1  A -A -1  1 -1 -A  A  1
X.6      1 -1  1  1 -1 -A  A -1  1 -1  A -A  1
X.7      1  1  1  1  1  A  A -1 -1 -1 -A -A  1
X.8      1  1  1  1  1 -A -A -1 -1 -1  A  A  1
X.9      2  .  2 -2  .  .  . -2  .  2  .  .  2
X.10     2  .  2 -2  .  .  .  2  . -2  .  .  2
X.11     4  . -4  .  .  .  .  .  .  .  .  .  4
X.12     4 -2  .  .  2  .  .  .  .  .  .  . -4
X.13     4  2  .  . -2  .  .  .  .  .  .  . -4

A = -E(4)
  = -Sqrt(-1) = -i