Properties

Label 16T1574
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1574$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,8,16,12,4,5,13,10,2,7,15,11,3,6,14,9), (1,10,16,5,2,9,15,6)(3,11,13,8,4,12,14,7), (1,5,4,7)(2,6,3,8)(9,15,12,13)(10,16,11,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $((C_8 : C_2):C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 16T79, 16T146 x 2
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T227 x 2, 16T240, 32T1151 x 2
256:  16T482 x 2, 16T502, 16T532, 16T542 x 2, 16T543
512:  32T12349 x 2, 32T13346
1024:  16T1174
2048:  32T159726

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1574 x 15, 32T207258 x 8, 32T207259 x 8, 32T207260 x 8, 32T207261 x 8, 32T207262 x 8, 32T207263 x 8, 32T207264 x 8, 32T207265 x 8, 32T207266 x 8, 32T207267 x 8, 32T207268 x 8, 32T207269 x 8, 32T207270 x 8, 32T207271 x 8, 32T207272 x 8, 32T220820 x 8, 32T249207 x 4, 32T249319 x 4, 32T249364 x 4, 32T311708 x 4, 32T313974 x 4, 32T314000 x 4, 32T314001 x 4, 32T314022 x 4, 32T314232 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 88 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.