Properties

Label 16T1567
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1567$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,12)(2,11)(3,10)(4,9)(5,13)(6,14)(7,15)(8,16), (1,4)(2,3)(5,8)(6,7)(9,11)(10,12)(13,15)(14,16), (9,10)(11,12)(13,14)(15,16), (1,3,2,4), (1,4,2,3)(5,12)(6,11)(7,9)(8,10)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(C_4^2 : C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T245 x 2, 16T265 x 2, 32T1237
256:  16T477 x 2, 16T509 x 2, 16T511, 16T531, 16T538
512:  32T12264 x 2, 32T12969
1024:  16T1177, 16T1226 x 2
2048:  32T103724

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1567 x 31, 32T207173 x 16, 32T207174 x 16, 32T207175 x 16, 32T207176 x 16, 32T207177 x 16, 32T207178 x 16, 32T207179 x 16, 32T207180 x 16, 32T207181 x 16, 32T207182 x 16, 32T207183 x 16, 32T207184 x 16, 32T207185 x 16, 32T207186 x 16, 32T207187 x 16, 32T220719 x 16, 32T249529 x 8, 32T313918 x 8, 32T314043 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 106 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.