Properties

Label 16T1561
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1561$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,6,4,8)(2,5,3,7)(9,16,11,13)(10,15,12,14), (1,5,15,9,4,7,14,12,2,6,16,10,3,8,13,11), (1,3)(2,4)(7,8)(9,12)(10,11)(13,15)(14,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T76 x 2, 16T79, 16T146 x 2
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T235 x 2, 16T240, 32T1151 x 2
256:  16T478, 16T482 x 2, 16T532, 16T537, 16T542 x 2
512:  32T12279, 32T12349 x 2
1024:  16T1178
2048:  32T159745

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1561 x 31, 32T207072 x 16, 32T207073 x 16, 32T207074 x 16, 32T207075 x 16, 32T207076 x 16, 32T207077 x 16, 32T207078 x 16, 32T207079 x 16, 32T207080 x 16, 32T207081 x 16, 32T207082 x 16, 32T207083 x 16, 32T207084 x 16, 32T207085 x 16, 32T207086 x 16, 32T220866 x 16, 32T250096 x 8, 32T313985 x 8, 32T314046 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 94 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.