Properties

Label 16T1559
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1559$
Parity:  $1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,12,16,7,4,10,14,5)(2,11,15,8,3,9,13,6), (1,7,4,6,2,8,3,5)(9,15,10,16)(11,13)(12,14), (1,13,3,15)(2,14,4,16)(5,8)(6,7)(9,12)(10,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $((C_8 : C_2):C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 16T79, 16T146 x 2
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T227 x 2, 16T240, 32T1151 x 2
256:  16T482 x 2, 16T502, 16T532, 16T542 x 2, 16T543
512:  32T12349 x 2, 32T13346
1024:  16T1174
2048:  32T126555

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1559 x 31, 16T1609 x 16, 16T1616 x 16, 32T207038 x 32, 32T207039 x 16, 32T207040 x 16, 32T207041 x 16, 32T207042 x 16, 32T207043 x 16, 32T207044 x 16, 32T207045 x 16, 32T207046 x 16, 32T207047 x 16, 32T207048 x 16, 32T207049 x 16, 32T207050 x 16, 32T207051 x 16, 32T207052 x 16, 32T207786 x 8, 32T207787 x 8, 32T207788 x 8, 32T207789 x 16, 32T207790 x 16, 32T207791 x 16, 32T207792 x 8, 32T207793 x 8, 32T207794 x 8, 32T207795 x 16, 32T207796 x 16, 32T207797 x 8, 32T207798 x 8, 32T207799 x 8, 32T207800 x 8, 32T207801 x 16, 32T207802 x 16, 32T207803 x 16, 32T207804 x 8, 32T207805 x 8, 32T207806 x 8, 32T207807 x 16, 32T207808 x 8, 32T207866 x 8, 32T207867 x 8, 32T207868 x 16, 32T207869 x 32, 32T207870 x 16, 32T207871 x 8, 32T207872 x 16, 32T207873 x 16, 32T207874 x 8, 32T207875 x 16, 32T207876 x 32, 32T207877 x 32, 32T207878 x 16, 32T207879 x 8, 32T207880 x 32, 32T207881 x 16, 32T207882 x 8, 32T207883 x 16, 32T207884 x 16, 32T207885 x 16, 32T207886 x 16, 32T207887 x 16, 32T207888 x 8, 32T207889 x 16, 32T207890 x 16, 32T207891 x 16, 32T207892 x 8, 32T207893 x 8, 32T207894 x 8, 32T207895 x 8, 32T207896 x 8, 32T207897 x 8, 32T207898 x 8, 32T220802 x 8, 32T242221 x 4, 32T242309 x 4, 32T249279 x 8, 32T250241 x 8, 32T309813 x 4, 32T313973 x 8, 32T314020 x 8, 32T321217 x 4, 32T365371 x 4, 32T396522 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 94 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.