Properties

Label 16T1558
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1558$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,3,5,7,2,4,6,8)(9,10)(11,12), (1,9,5,13,2,10,6,14)(3,12,7,15,4,11,8,16), (1,7,2,8)(3,5,4,6)(9,15,10,16)(11,14,12,13), (9,10)(13,14), (1,7,2,8)(3,6,4,5)(9,13)(10,14)(11,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 20, $C_2^3$ x 15
16:  $D_4\times C_2$ x 30, $C_2^4$
32:  $C_2^2 \wr C_2$ x 8, $C_2^3 : D_4 $ x 2, $C_2^2 \times D_4$ x 5
64:  $(C_4^2 : C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T87, 16T105 x 2, 16T109 x 4
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T245 x 2, 16T265 x 2, 32T1237
256:  16T477 x 2, 16T509 x 2, 16T511, 16T531, 16T538
512:  32T12264 x 2, 32T12969
1024:  16T1177
2048:  32T128071

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(C_4^2 : C_2):C_2$

Low degree siblings

16T1558 x 15, 32T207027 x 8, 32T207028 x 16, 32T207029 x 8, 32T207030 x 8, 32T207031 x 16, 32T207032 x 8, 32T207033 x 16, 32T207034 x 8, 32T207035 x 16, 32T207036 x 8, 32T207037 x 8, 32T220698 x 8, 32T245897 x 4, 32T245952 x 8, 32T303536 x 8, 32T327819 x 4, 32T327841 x 4, 32T375037 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 94 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.