Properties

Label 16T1547
Order \(4096\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1547$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (3,4)(5,6)(7,10)(8,9)(11,14,12,13)(15,16), (3,5)(4,6)(7,8)(9,10)(11,13,12,14)(15,16), (1,2)(3,4), (1,10)(2,9)(3,12,4,11)(5,13,6,14)(7,15)(8,16), (1,6)(2,5)(3,16)(4,15)(7,12)(8,11)(9,14)(10,13), (1,16,2,15)(3,5,4,6)(9,10)(13,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 63
4:  $C_2^2$ x 651
8:  $C_2^3$ x 1395
16:  $C_2^4$ x 651
32:  $C_2^3 : D_4 $ x 28, 32T39 x 63
64:  16T69 x 42, 64T?
128:  32T1011 x 7
256:  16T448 x 7
512:  64T?
1024:  16T1082 x 3
2048:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $C_2^3 : D_4 $

Low degree siblings

16T1547 x 31, 32T206833 x 48, 32T206834 x 48, 32T206835 x 48, 32T206836 x 96, 32T206837 x 96, 32T206838 x 16, 32T206839 x 48, 32T206840 x 48, 32T206841 x 48, 32T212711 x 48

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 133 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4096=2^{12}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.