Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1540$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,2,11)(3,10,4,9), (1,8,16,9,3,6,13,11,2,7,15,10,4,5,14,12), (1,16,4,13,2,15,3,14)(5,8)(6,7)(9,12)(10,11) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 6: $S_3$ 12: $D_{6}$ 24: $S_4$ 48: $S_4\times C_2$ 192: $V_4^2:(S_3\times C_2)$ 384: $C_2 \wr S_4$ 768: 24T2409 1536: 24T4409 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Degree 8: $C_2 \wr S_4$
Low degree siblings
16T1540 x 3, 32T205686 x 2, 32T205687 x 2, 32T205688 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $6$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $6$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)$ |
| $ 4, 4, 4, 4 $ | $2$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)$ |
| $ 4, 4, 4, 4 $ | $48$ | $4$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $48$ | $2$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,16)( 6,15)( 7,13)( 8,14)$ |
| $ 8, 8 $ | $96$ | $8$ | $( 1,15, 4,13, 2,16, 3,14)( 5,11, 7, 9, 6,12, 8,10)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $12$ | $4$ | $( 5, 7, 6, 8)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $12$ | $4$ | $( 1, 2)( 3, 4)( 5, 7, 6, 8)( 9,10)(11,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 1, 1, 1, 1 $ | $24$ | $4$ | $( 5, 7, 6, 8)( 9,10)(11,12)(13,15,14,16)$ |
| $ 3, 3, 3, 3, 1, 1, 1, 1 $ | $128$ | $3$ | $( 5,12,16)( 6,11,15)( 7,10,13)( 8, 9,14)$ |
| $ 6, 6, 2, 2 $ | $128$ | $6$ | $( 1, 2)( 3, 4)( 5,11,15, 6,12,16)( 7, 9,14, 8,10,13)$ |
| $ 12, 4 $ | $256$ | $12$ | $( 1, 4, 2, 3)( 5,10,16, 7,11,13, 6, 9,15, 8,12,14)$ |
| $ 4, 4, 1, 1, 1, 1, 1, 1, 1, 1 $ | $24$ | $4$ | $( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $24$ | $4$ | $( 1, 2)( 3, 4)( 5,15, 6,16)( 7,14, 8,13)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $48$ | $2$ | $( 5,16)( 6,15)( 7,13)( 8,14)( 9,10)(11,12)$ |
| $ 4, 4, 4, 4 $ | $48$ | $4$ | $( 1, 4, 2, 3)( 5,13, 6,14)( 7,15, 8,16)( 9,12,10,11)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $48$ | $4$ | $( 1, 4, 2, 3)( 5,14)( 6,13)( 7,16)( 8,15)( 9,11,10,12)$ |
| $ 8, 8 $ | $192$ | $8$ | $( 1, 5,10,16, 2, 6, 9,15)( 3, 7,11,13, 4, 8,12,14)$ |
| $ 8, 8 $ | $192$ | $8$ | $( 1, 5, 9,16, 2, 6,10,15)( 3, 7,12,13, 4, 8,11,14)$ |
| $ 8, 4, 1, 1, 1, 1 $ | $96$ | $8$ | $( 5,14, 7,16, 6,13, 8,15)( 9,12,10,11)$ |
| $ 8, 4, 2, 2 $ | $96$ | $8$ | $( 1, 2)( 3, 4)( 5,14, 7,16, 6,13, 8,15)( 9,11,10,12)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $32$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $32$ | $2$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,14)$ |
| $ 8, 2, 2, 2, 2 $ | $96$ | $8$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5,15, 8,14, 6,16, 7,13)$ |
| $ 8, 4, 4 $ | $48$ | $8$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,16, 7,14, 6,15, 8,13)$ |
| $ 8, 4, 4 $ | $48$ | $8$ | $( 1,12, 2,11)( 3, 9, 4,10)( 5,16, 7,14, 6,15, 8,13)$ |
| $ 6, 6, 2, 1, 1 $ | $256$ | $6$ | $( 3, 4)( 5,12,15, 8,10,13)( 6,11,16, 7, 9,14)$ |
| $ 6, 3, 3, 2, 2 $ | $256$ | $6$ | $( 1, 4)( 2, 3)( 5,10,16, 6, 9,15)( 7,12,13)( 8,11,14)$ |
| $ 8, 2, 2, 1, 1, 1, 1 $ | $96$ | $8$ | $( 3, 4)( 5,15, 8,14, 6,16, 7,13)(11,12)$ |
| $ 8, 2, 2, 2, 2 $ | $96$ | $8$ | $( 1, 4)( 2, 3)( 5,13, 7,16, 6,14, 8,15)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $96$ | $2$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5, 6)(13,15)(14,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $96$ | $4$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5, 6)(13,16)(14,15)$ |
| $ 16 $ | $192$ | $16$ | $( 1, 5,10,16, 4, 7,12,13, 2, 6, 9,15, 3, 8,11,14)$ |
| $ 16 $ | $192$ | $16$ | $( 1, 5, 9,16, 4, 7,11,13, 2, 6,10,15, 3, 8,12,14)$ |
Group invariants
| Order: | $3072=2^{10} \cdot 3$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |