Properties

Label 16T1538
Order \(3072\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1538$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,7,9)(2,14,8,10)(3,16,6,11)(4,15,5,12), (1,14,10,8,3,15,12,5)(2,13,9,7,4,16,11,6), (1,3)(2,4)(5,16,11,8,13,9)(6,15,12,7,14,10)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$
24:  $S_4$ x 3
48:  $S_4\times C_2$ x 3
96:  $V_4^2:S_3$
192:  $C_2^3:S_4$ x 2, $V_4^2:(S_3\times C_2)$ x 2, 12T100
384:  $C_2 \wr S_4$ x 2, 16T747
768:  16T1068
1536:  24T3293, 24T3382 x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: $S_4$

Degree 8: $C_2^3:S_4$, $C_2 \wr S_4$ x 2

Low degree siblings

16T1538 x 15, 32T205680 x 4, 32T205681 x 4, 32T205682 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 60 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $3072=2^{10} \cdot 3$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.