Properties

Label 16T1477
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1477$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,13,4,16,2,14,3,15)(5,10,8,11,6,9,7,12), (1,11,3,9,2,12,4,10)(7,8)(15,16), (1,4,2,3)(5,7,6,8)(9,12,10,11)(13,14)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_2^3$
16:  $D_4\times C_2$ x 6, $Q_8:C_2$
32:  $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$
64:  $(C_4^2 : C_2):C_2$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 32T320
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T336, 16T342, 16T350, 16T382, 16T408
256:  32T5721, 32T5807, 32T6155
512:  16T997, 16T998, 16T1025
1024:  32T42529

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1477 x 15, 32T99350 x 8, 32T99351 x 8, 32T99352 x 8, 32T99353 x 8, 32T99354 x 8, 32T99355 x 8, 32T99356 x 8, 32T122194 x 8, 32T144392 x 8, 32T145161 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 74 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.