Properties

Label 16T1472
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1472$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,16,3,14)(2,15,4,13)(5,9,8,11)(6,10,7,12), (1,3)(2,4)(7,8)(9,10)(15,16), (1,11)(2,12)(3,9)(4,10)(5,13)(6,14)(7,16)(8,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_2^3$
16:  $D_4\times C_2$ x 6, $Q_8:C_2$
32:  $C_2^2 \wr C_2$ x 3, 16T34 x 3, $C_4^2:C_2$
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 32T320
128:  $C_2 \wr C_2\wr C_2$ x 4, 16T336 x 4, 16T350 x 3
256:  32T5721 x 4, 32T6030
512:  16T949, 16T964 x 2
1024:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1472 x 31, 32T99312 x 16, 32T99313 x 16, 32T99314 x 32, 32T99315 x 32, 32T99316 x 32, 32T99317 x 16, 32T99318 x 16, 32T99319 x 16, 32T99320 x 32, 32T99321 x 16, 32T99322 x 16, 32T110258 x 16, 32T116102 x 32

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 74 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.