Properties

Label 16T1435
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1435$
Parity:  $1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,13,2,14)(3,12,8,16)(4,11,7,15)(5,9,6,10), (1,6,2,5)(7,8)(9,13)(10,14)(11,12)(15,16), (1,12)(2,11)(3,13,8,9)(4,14,7,10)(5,15)(6,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 4, $C_4\times C_2^2$
32:  $C_2^3 : C_4 $ x 4, $C_4^2:C_2$ x 2, $C_2 \times (C_2^2:C_4)$, 16T37 x 4
64:  16T76 x 2, 32T197
128:  16T212 x 2, 16T274
256:  32T3799
512:  16T813 x 2, 16T825
1024:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $C_2^3: C_4$

Low degree siblings

16T1372 x 8, 16T1435 x 7, 32T98243 x 4, 32T98244 x 16, 32T98245 x 8, 32T98246 x 8, 32T98247 x 8, 32T98248 x 8, 32T98249 x 4, 32T98250 x 4, 32T98251 x 8, 32T98252 x 16, 32T98253 x 4, 32T98254 x 8, 32T98255 x 8, 32T98256 x 8, 32T98257 x 8, 32T98258 x 4, 32T98259 x 4, 32T98960 x 4, 32T98961 x 8, 32T98962 x 8, 32T98963 x 4, 32T98964 x 8, 32T98965 x 8, 32T98966 x 4, 32T98967 x 4, 32T98968 x 4, 32T98969 x 4, 32T110417 x 8, 32T110418 x 8, 32T112054 x 4, 32T112055 x 4, 32T115627 x 8, 32T138587 x 2, 32T138604 x 2, 32T165886 x 2, 32T190950 x 2, 32T200519 x 2, 32T204240 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 56 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.