Properties

Label 16T1433
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1433$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,15,4,13,2,16,3,14)(5,6)(9,12)(10,11), (1,13,4,15,2,14,3,16)(5,9,7,11,6,10,8,12), (1,5,3,8)(2,6,4,7)(9,16,10,15)(11,14)(12,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 12, $C_2 \times (C_2^2:C_4)$ x 3
64:  $((C_8 : C_2):C_2):C_2$ x 8, 16T76 x 6, 16T79
128:  16T227 x 4, 16T240 x 3
256:  16T502 x 2, 16T581
512:  16T911
1024:  32T61722

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1433 x 15, 32T98944 x 8, 32T98945 x 32, 32T98946 x 8, 32T98947 x 8, 32T98948 x 32, 32T98949 x 8, 32T98950 x 8, 32T98951 x 8, 32T98952 x 8, 32T107388 x 8, 32T107394 x 8, 32T142151 x 4, 32T182640 x 4, 32T182693 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 68 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.