Properties

Label 16T1432
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1432$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,10)(2,9)(3,11)(4,12)(5,6)(7,8)(13,16,14,15), (1,3,2,4)(5,7,6,8)(9,10)(11,12)(13,16,14,15), (1,14,4,16,2,13,3,15)(5,12,6,11)(7,10,8,9)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_4\wr C_2$ x 4, $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T111 x 2, 32T239
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T208, 16T211, 16T222, 16T345 x 2
256:  32T3766, 32T4357 x 2
512:  16T871, 16T876, 16T890
1024:  32T40794

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1432 x 15, 32T98937 x 8, 32T98938 x 8, 32T98939 x 8, 32T98940 x 8, 32T98941 x 8, 32T98942 x 8, 32T98943 x 8, 32T116199 x 8, 32T144391 x 4, 32T144443 x 4, 32T145174 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 119 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.