Properties

Label 16T1430
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1430$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (1,16,10,6,2,15,9,5)(3,14,11,8,4,13,12,7), (1,11,4,10,2,12,3,9)(5,6)(13,14), (1,15,11,7,3,14,10,6,2,16,12,8,4,13,9,5)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 32T239
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T208, 16T218, 16T230, 16T345 x 2
256:  32T3729, 32T4357 x 2
512:  16T893
1024:  32T58414

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$

Low degree siblings

16T1430 x 7, 32T98916 x 4, 32T98917 x 4, 32T98918 x 4, 32T98919 x 4, 32T98920 x 4, 32T98921 x 4, 32T98922 x 4, 32T116188 x 4, 32T144384 x 2, 32T144387 x 2, 32T144388 x 2, 32T144612 x 4, 32T144621 x 4, 32T145171 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 71 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.