Properties

Label 16T1429
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1429$
Parity:  $1$
Primitive:  No
Nilpotency class:  $6$
Generators:  (9,10)(11,12), (1,16)(2,15)(3,10)(4,9)(5,11)(6,12)(7,14)(8,13), (1,8,6,3)(2,7,5,4)(11,12)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_4\wr C_2$ x 4, $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T111 x 2, 32T239
128:  $C_2 \wr C_2\wr C_2$ x 2, 16T208, 16T211, 16T222, 16T345 x 2
256:  32T3766, 32T4357 x 2
512:  16T876
1024:  32T58388

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_4\wr C_2$

Low degree siblings

16T1361 x 8, 16T1425 x 4, 16T1429 x 3, 32T98112 x 8, 32T98113 x 4, 32T98114 x 4, 32T98115 x 4, 32T98116 x 4, 32T98117 x 4, 32T98118 x 4, 32T98863 x 4, 32T98864 x 4, 32T98865 x 4, 32T98866 x 4, 32T98867 x 2, 32T98868 x 4, 32T98869 x 2, 32T98870 x 4, 32T98909 x 4, 32T98910 x 4, 32T98911 x 2, 32T98912 x 8, 32T98913 x 4, 32T98914 x 2, 32T98915 x 4, 32T140784 x 2, 32T140792 x 2, 32T140801 x 2, 32T144411 x 2, 32T144413 x 4, 32T144416 x 2, 32T144470 x 2, 32T144543 x 2, 32T144579 x 2, 32T144588 x 4, 32T144611 x 2, 32T144636 x 2, 32T145206 x 2, 32T180119 x 2, 32T192293 x 2, 32T192305 x 2, 32T192312 x 2, 32T192505 x 2, 32T202620 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 77 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.