Show commands:
Magma
magma: G := TransitiveGroup(16, 141);
Group action invariants
Degree $n$: | $16$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $141$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $D_4:D_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $8$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,14)(2,13)(3,4)(5,10)(6,9)(7,15)(8,16)(11,12), (1,3,6,8,10,12,13,15)(2,4,5,7,9,11,14,16), (1,9)(2,10)(3,4)(5,6)(7,15)(8,16)(11,12)(13,14) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $(C_4^2 : C_2):C_2$ x 2
Low degree siblings
8T26 x 4, 16T135 x 2, 16T141, 16T142 x 2, 16T152 x 2, 32T147 x 2, 32T148 x 2, 32T155, 32T156Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8}$ | $1$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
2B | $2^{4},1^{8}$ | $2$ | $2$ | $4$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
2C | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5,15)( 6,16)( 7,13)( 8,14)( 9,12)(10,11)$ |
2D | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3,16)( 4,15)( 7,12)( 8,11)( 9,13)(10,14)$ |
2E | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,15)( 2,16)( 3, 6)( 4, 5)( 7, 9)( 8,10)(11,14)(12,13)$ |
2F | $2^{8}$ | $4$ | $2$ | $8$ | $( 1, 9)( 2,10)( 3, 4)( 5, 6)( 7,15)( 8,16)(11,12)(13,14)$ |
2G | $2^{8}$ | $8$ | $2$ | $8$ | $( 1, 5)( 2, 6)( 3, 4)( 7,15)( 8,16)( 9,13)(10,14)(11,12)$ |
4A | $4^{4}$ | $2$ | $4$ | $12$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 8,12,15)( 4, 7,11,16)$ |
4B | $4^{4}$ | $2$ | $4$ | $12$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3, 8,12,15)( 4, 7,11,16)$ |
4C | $4^{2},1^{8}$ | $4$ | $4$ | $6$ | $( 3,15,12, 8)( 4,16,11, 7)$ |
4D | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,11,10, 4)( 2,12, 9, 3)( 5, 8,14,15)( 6, 7,13,16)$ |
4E | $4^{2},2^{4}$ | $4$ | $4$ | $10$ | $( 1,10)( 2, 9)( 3,15,12, 8)( 4,16,11, 7)( 5,14)( 6,13)$ |
4F | $4^{4}$ | $4$ | $4$ | $12$ | $( 1,12,10, 3)( 2,11, 9, 4)( 5,16,14, 7)( 6,15,13, 8)$ |
8A | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 3, 6, 8,10,12,13,15)( 2, 4, 5, 7, 9,11,14,16)$ |
8B | $8^{2}$ | $8$ | $8$ | $14$ | $( 1, 7,13,11,10,16, 6, 4)( 2, 8,14,12, 9,15, 5, 3)$ |
Malle's constant $a(G)$: $1/4$
magma: ConjugacyClasses(G);
Group invariants
Order: | $64=2^{6}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | $3$ | ||
Label: | 64.134 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 8A | 8B | ||
Size | 1 | 1 | 2 | 4 | 4 | 4 | 4 | 8 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2B | 2A | 2B | 2A | 4A | 4B | |
Type | |||||||||||||||||
64.134.1a | R | ||||||||||||||||
64.134.1b | R | ||||||||||||||||
64.134.1c | R | ||||||||||||||||
64.134.1d | R | ||||||||||||||||
64.134.1e | R | ||||||||||||||||
64.134.1f | R | ||||||||||||||||
64.134.1g | R | ||||||||||||||||
64.134.1h | R | ||||||||||||||||
64.134.2a | R | ||||||||||||||||
64.134.2b | R | ||||||||||||||||
64.134.2c | R | ||||||||||||||||
64.134.2d | R | ||||||||||||||||
64.134.2e | R | ||||||||||||||||
64.134.2f | R | ||||||||||||||||
64.134.4a | R | ||||||||||||||||
64.134.4b | R |
magma: CharacterTable(G);