Properties

Label 16T1398
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1398$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,5,3,7)(2,6,4,8)(9,13,12,16)(10,14,11,15), (1,3,2,4)(5,7,6,8)(9,11,10,12)(13,14)(15,16), (1,12,4,10,2,11,3,9)(5,13,8,16,6,14,7,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4, 16T76 x 2, 32T239
128:  16T208, 16T218, 16T230, 16T234 x 2, 16T235 x 2
256:  32T3729, 32T4050 x 2
512:  16T847 x 2, 16T938
1024:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1398 x 31, 32T98547 x 16, 32T98548 x 16, 32T98549 x 32, 32T98550 x 32, 32T98551 x 16, 32T98552 x 16, 32T98553 x 32, 32T98554 x 16, 32T98555 x 32, 32T98556 x 16, 32T98557 x 16, 32T110322 x 16, 32T115726 x 32

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 71 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.