Properties

Label 16T1378
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1378$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,10,2,9)(3,11)(4,12)(5,13)(6,14)(7,15,8,16), (1,15,2,16)(3,5,4,6)(7,9)(8,10)(11,13)(12,14), (1,5)(2,6)(3,16,4,15)(7,11)(8,12)(9,13)(10,14), (15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 14, 16T105 x 7
128:  16T241 x 7, 16T245 x 7, 16T325
256:  32T4223 x 7
512:  16T907 x 7
1024:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 7

Degree 4: $C_2^2$ x 7

Degree 8: $C_2^3$

Low degree siblings

16T1352 x 112, 16T1378 x 15, 32T98023 x 112, 32T98024 x 168, 32T98025 x 168, 32T98026 x 56, 32T98027 x 168, 32T98028 x 168, 32T98029 x 56, 32T98309 x 168, 32T98310 x 56, 32T98311 x 224, 32T98312 x 56, 32T98313 x 224, 32T98314 x 168, 32T98315 x 56, 32T98316 x 8, 32T105228 x 56

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 95 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.