Properties

Label 16T1360
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1360$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,16)(2,15)(3,13)(4,14)(5,11,8,9,6,12,7,10), (1,12,2,11)(3,10)(4,9)(5,15)(6,16)(7,13,8,14), (1,16,2,15)(3,13)(4,14)(5,10)(6,9)(7,12,8,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$, $C_2^3 : C_4 $ x 4, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  $((C_8 : C_2):C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 32T239
128:  16T208, 16T218, 16T219 x 2, 16T227 x 2, 16T230
256:  32T3729, 32T4019 x 2
512:  16T812 x 2, 16T912
1024:  128T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $(((C_4 \times C_2): C_2):C_2):C_2$

Low degree siblings

16T1360 x 15, 32T98101 x 8, 32T98102 x 8, 32T98103 x 16, 32T98104 x 8, 32T98105 x 8, 32T98106 x 16, 32T98107 x 8, 32T98108 x 8, 32T98109 x 16, 32T98110 x 16, 32T98111 x 8, 32T110355 x 8, 32T115659 x 16, 32T139168 x 4, 32T166242 x 4, 32T180620 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 65 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.