Properties

Label 16T1340
Order \(2048\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1340$
Parity:  $1$
Primitive:  No
Nilpotency class:  $4$
Generators:  (1,5)(2,6)(3,7)(4,8)(9,16)(10,15)(11,13)(12,14), (9,10)(11,12)(13,14)(15,16), (1,4)(2,3)(5,7)(6,8)(9,12)(10,11)(13,15)(14,16), (1,3)(2,4), (1,12,2,11)(3,9,4,10)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 28, $C_2^3$ x 15
16:  $D_4\times C_2$ x 42, $C_2^4$
32:  $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7
64:  $(((C_4 \times C_2): C_2):C_2):C_2$ x 6, 16T105 x 7
128:  $C_2 \wr C_2\wr C_2$ x 12, 16T241 x 3, 16T245 x 3, 16T325
256:  16T509 x 6, 32T4223 x 3
512:  16T819 x 3, 16T907, 16T919 x 3
1024:  32T40151 x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 8: $C_2 \wr C_2\wr C_2$ x 3

Low degree siblings

16T1340 x 511, 32T97863 x 128, 32T97864 x 768, 32T97865 x 768, 32T97866 x 384, 32T97867 x 384, 32T97868 x 384, 32T97869 x 384, 32T97870 x 384, 32T97871 x 384, 32T112187 x 192, 32T112231 x 64, 32T112277 x 192, 32T113099 x 192, 32T113154 x 384, 32T114069 x 64, 32T114426 x 192

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 119 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $2048=2^{11}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.