Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1281$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $7$ | |
| Generators: | (1,6,10,13)(2,5,9,14)(3,8,11,16,4,7,12,15), (1,15,12,7)(2,16,11,8)(3,13,9,6)(4,14,10,5) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $QD_{16}$, $C_2^2:C_4$, $Q_{16}$ 32: $C_4\wr C_2$, $C_2^3 : C_4 $, 32T50 64: $((C_8 : C_2):C_2):C_2$, 16T154, 16T161 128: 32T1744 256: 16T684 512: 32T28201 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $C_2^3: C_4$
Low degree siblings
16T1263 x 4, 16T1281 x 3, 32T36722 x 4, 32T36723 x 2, 32T36724 x 2, 32T36725 x 2, 32T36726 x 2, 32T36727 x 2, 32T36728 x 2, 32T36856 x 2, 32T36857 x 2, 32T36858 x 2, 32T36859 x 2, 32T36860 x 2, 32T36861 x 2, 32T55481 x 2, 32T56980 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1, 2)( 3, 4)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,10)( 2, 9)( 3,11, 4,12)( 5,14)( 6,13)( 7,15, 8,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,10)( 2, 9)( 3,12, 4,11)( 5,14)( 6,13)( 7,16, 8,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 3, 2, 4)( 5, 8)( 6, 7)( 9,11,10,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 4)( 2, 3)( 5, 7, 6, 8)( 9,12)(10,11)(13,15,14,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 3)( 2, 4)( 5, 7, 6, 8)( 9,12)(10,11)(13,16,14,15)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 4, 4 $ | $64$ | $8$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 8,11,16, 4, 7,12,15)$ |
| $ 8, 4, 4 $ | $64$ | $8$ | $( 1, 6,10,13)( 2, 5, 9,14)( 3, 7,11,15, 4, 8,12,16)$ |
| $ 8, 4, 4 $ | $64$ | $8$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3,16,12, 8, 4,15,11, 7)$ |
| $ 8, 4, 4 $ | $64$ | $8$ | $( 1,13,10, 6)( 2,14, 9, 5)( 3,15,12, 7, 4,16,11, 8)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $32$ | $4$ | $( 5, 8, 6, 7)(11,12)(13,15)(14,16)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1 $ | $32$ | $4$ | $( 1, 2)( 3, 4)( 5, 8, 6, 7)(11,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,16)( 6,15)( 7,14)( 8,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,15, 6,16)( 7,14, 8,13)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1,10, 2, 9)( 3,11, 4,12)( 5,15, 6,16)( 7,13, 8,14)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $4$ | $( 5, 6)( 7, 8)( 9,11,10,12)(13,15)(14,16)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $32$ | $4$ | $( 3, 4)( 5, 6)( 9,12)(10,11)(13,16,14,15)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $32$ | $4$ | $( 1, 2)( 5, 6)( 9,12)(10,11)(13,15,14,16)$ |
| $ 4, 2, 2, 2, 2, 2, 2 $ | $16$ | $4$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,11,10,12)(13,16)(14,15)$ |
| $ 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $16$ | $4$ | $( 9,11,10,12)(13,16)(14,15)$ |
| $ 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $4$ | $( 1, 2)( 3, 4)( 9,11,10,12)(13,15)(14,16)$ |
| $ 8, 4, 4 $ | $64$ | $8$ | $( 1,10, 3,11)( 2, 9, 4,12)( 5,13, 8,15, 6,14, 7,16)$ |
| $ 8, 4, 4 $ | $64$ | $8$ | $( 1,12, 3, 9)( 2,11, 4,10)( 5,16, 7,14, 6,15, 8,13)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1, 6, 9,16, 2, 5,10,15)( 3, 8,12,14, 4, 7,11,13)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1, 6, 9,15)( 2, 5,10,16)( 3, 7,12,14)( 4, 8,11,13)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,13,11, 6, 2,14,12, 5)( 3,16, 9, 7, 4,15,10, 8)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1,13,12, 5)( 2,14,11, 6)( 3,15,10, 7)( 4,16, 9, 8)$ |
Group invariants
| Order: | $1024=2^{10}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |