Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $128$ | |
| Group : | $C_2\wr C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,16)(2,15)(3,6)(4,5)(7,10)(8,9)(11,14)(12,13), (1,5)(2,6)(3,15)(4,16)(7,11)(8,12)(9,13)(10,14), (1,2)(5,6)(7,15)(8,16)(9,10)(13,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
8T29 x 6, 8T31 x 2, 16T127, 16T128 x 2, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3, 4)( 5,13)( 6,14)( 7, 8)(11,12)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,11)( 4,12)( 7,15)( 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 3,12)( 4,11)( 5,13)( 6,14)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3, 4)( 5,14)( 6,13)( 7,16)( 8,15)( 9,10)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $2$ | $2$ | $( 1, 2)( 3,12)( 4,11)( 5,14)( 6,13)( 7, 8)( 9,10)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 3, 2, 4)( 5,15,14, 8)( 6,16,13, 7)( 9,11,10,12)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3, 9,11)( 2, 4,10,12)( 5, 7,13,15)( 6, 8,14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 5, 9,13)( 2, 6,10,14)( 3, 8)( 4, 7)(11,16)(12,15)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 6, 9,14)( 2, 5,10,13)( 3, 8,11,16)( 4, 7,12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 7, 2, 8)( 3, 6,12,13)( 4, 5,11,14)( 9,15,10,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7, 9,15)( 2, 8,10,16)( 3,13,11, 5)( 4,14,12, 6)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 9)( 2,10)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 138] |
| Character table: |
2 6 4 5 4 5 5 4 3 4 4 3 4 4 3 4 6
1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 4c 4d 2h 4e 4f 2i
2P 1a 1a 1a 1a 1a 1a 1a 2d 2i 1a 2b 2i 1a 2e 2i 1a
3P 1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 4c 4d 2h 4e 4f 2i
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1
X.3 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 1 -1 1
X.4 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 -1 1 -1 1
X.5 1 -1 1 -1 1 1 1 -1 1 1 -1 1 1 -1 1 1
X.6 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.7 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1
X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
X.9 2 . 2 . -2 -2 . . . -2 . 2 . . . 2
X.10 2 . 2 . -2 -2 . . . 2 . -2 . . . 2
X.11 2 . -2 . -2 2 . . . . . . -2 . 2 2
X.12 2 . -2 . -2 2 . . . . . . 2 . -2 2
X.13 2 . -2 . 2 -2 -2 . 2 . . . . . . 2
X.14 2 . -2 . 2 -2 2 . -2 . . . . . . 2
X.15 4 -2 . 2 . . . . . . . . . . . -4
X.16 4 2 . -2 . . . . . . . . . . . -4
|