Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $127$ | |
| Group : | $C_2\wr C_2^2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $3$ | |
| Generators: | (1,5)(2,6)(3,16)(4,15)(7,12)(8,11)(9,13)(10,14), (1,2)(3,4)(5,6)(7,15)(8,16)(9,10)(11,12)(13,14), (1,16)(2,15)(3,5)(4,6)(7,10)(8,9)(11,13)(12,14) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $D_{4}$ x 6, $C_2^3$ 16: $D_4\times C_2$ x 3 32: $C_2^2 \wr C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7
Degree 8: $C_2^3$, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2
Low degree siblings
8T29 x 6, 8T31 x 2, 16T128 x 3, 16T129 x 3, 16T147, 16T149 x 6, 16T150 x 3, 32T136 x 3, 32T137 x 2, 32T163 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 5,14)( 6,13)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 7,16)( 8,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 3,12)( 4,11)( 5,14)( 6,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,15)( 8,16)( 9,10)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 2)( 3,11)( 4,12)( 5,13)( 6,14)( 7,15)( 8,16)( 9,10)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 3,10,12)( 2, 4, 9,11)( 5, 7,14,16)( 6, 8,13,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 4)( 2, 3)( 5, 8,14,15)( 6, 7,13,16)( 9,12)(10,11)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 5)( 2, 6)( 3, 7)( 4, 8)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 5,10,14)( 2, 6, 9,13)( 3, 7,12,16)( 4, 8,11,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 6)( 2, 5)( 3, 8,12,15)( 4, 7,11,16)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $4$ | $2$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $4$ | $4$ | $( 1, 7,10,16)( 2, 8, 9,15)( 3, 5,12,14)( 4, 6,11,13)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $8$ | $4$ | $( 1, 8,10,15)( 2, 7, 9,16)( 3, 6)( 4, 5)(11,14)(12,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,10)( 2, 9)( 3,12)( 4,11)( 5,14)( 6,13)( 7,16)( 8,15)$ |
Group invariants
| Order: | $64=2^{6}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [64, 138] |
| Character table: |
2 6 5 5 5 4 4 4 4 3 4 4 3 4 4 3 6
1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 4c 4d 2h 4e 4f 2i
2P 1a 1a 1a 1a 1a 1a 1a 2i 2a 1a 2i 2b 1a 2i 2c 1a
3P 1a 2a 2b 2c 2d 2e 2f 4a 4b 2g 4c 4d 2h 4e 4f 2i
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1 1
X.3 1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 1
X.4 1 1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1
X.5 1 1 1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 1
X.6 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.7 1 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1
X.8 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1
X.9 2 2 -2 -2 . . -2 2 . . . . . . . 2
X.10 2 2 -2 -2 . . 2 -2 . . . . . . . 2
X.11 2 -2 -2 2 . . . . . . . . -2 2 . 2
X.12 2 -2 -2 2 . . . . . . . . 2 -2 . 2
X.13 2 -2 2 -2 . . . . . -2 2 . . . . 2
X.14 2 -2 2 -2 . . . . . 2 -2 . . . . 2
X.15 4 . . . -2 2 . . . . . . . . . -4
X.16 4 . . . 2 -2 . . . . . . . . . -4
|