Group action invariants
| Degree $n$ : | $16$ | |
| Transitive number $t$ : | $1251$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $7$ | |
| Generators: | (1,14,7,11,4,15,5,9,2,13,8,12,3,16,6,10), (1,7)(2,8)(3,6,4,5)(9,13,11,15)(10,14,12,16) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $D_{8}$, $QD_{16}$, $C_2^2:C_4$ 32: $C_4\wr C_2$, $C_2^3 : C_4 $, 16T26 64: $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T163 128: 16T330 256: 16T682 512: 16T944 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: $((C_8 : C_2):C_2):C_2$
Low degree siblings
16T1251 x 7, 32T36617 x 4, 32T36618 x 8, 32T36619 x 4, 32T36620 x 4, 32T36621 x 16, 32T36622 x 4, 32T36623 x 4, 32T36624 x 4, 32T36625 x 8, 32T36626 x 4, 32T57005 x 4, 32T57008 x 4, 32T70806 x 2, 32T70840 x 2, 32T71345, 32T71348Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $2$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 7, 4, 5, 2, 8, 3, 6)( 9,13,12,16,10,14,11,15)$ |
| $ 8, 8 $ | $32$ | $8$ | $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,16,11,13,10,15,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $16$ | $2$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)(11,12)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $8$ | $2$ | $( 3, 4)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $2$ | $(13,14)(15,16)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $4$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$ |
| $ 4, 4, 4, 4 $ | $8$ | $4$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$ |
| $ 16 $ | $64$ | $16$ | $( 1,14, 7,11, 4,15, 5, 9, 2,13, 8,12, 3,16, 6,10)$ |
| $ 16 $ | $64$ | $16$ | $( 1,15, 8,10, 4,13, 6,11, 2,16, 7, 9, 3,14, 5,12)$ |
| $ 16 $ | $64$ | $16$ | $( 1,11, 5,13, 3,10, 7,15, 2,12, 6,14, 4, 9, 8,16)$ |
| $ 16 $ | $64$ | $16$ | $( 1, 9, 6,15, 3,11, 8,14, 2,10, 5,16, 4,12, 7,13)$ |
| $ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $32$ | $4$ | $( 3, 4)( 5, 7)( 6, 8)(13,15,14,16)$ |
| $ 4, 2, 2, 2, 2, 2, 1, 1 $ | $32$ | $4$ | $( 1, 2)( 5, 8)( 6, 7)( 9,10)(11,12)(13,16,14,15)$ |
| $ 4, 4, 2, 2, 2, 2 $ | $32$ | $4$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 4, 4, 4, 4 $ | $16$ | $4$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,16,10,15)(11,13,12,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2 $ | $16$ | $2$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)(13,15)(14,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $16$ | $2$ | $( 1, 2)( 5, 6)( 7, 8)( 9,10)(11,12)(13,16)(14,15)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $32$ | $4$ | $( 1, 4)( 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(15,16)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 3, 4)( 5, 6)( 7, 8)(13,16)(14,15)$ |
| $ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $16$ | $2$ | $( 1, 2)( 9,10)(11,12)(13,15)(14,16)$ |
| $ 4, 4, 2, 2, 2, 1, 1 $ | $32$ | $4$ | $( 1, 4)( 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,14)$ |
| $ 4, 4, 4, 2, 2 $ | $64$ | $4$ | $( 1, 7, 4, 6)( 2, 8, 3, 5)( 9,13)(10,14)(11,15,12,16)$ |
| $ 4, 4, 4, 2, 2 $ | $64$ | $4$ | $( 1, 7, 3, 6)( 2, 8, 4, 5)( 9,15,10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1,14, 6,10)( 2,13, 5, 9)( 3,15, 8,12)( 4,16, 7,11)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,15, 6,11, 2,16, 5,12)( 3,13, 8,10, 4,14, 7, 9)$ |
| $ 8, 8 $ | $64$ | $8$ | $( 1,11, 5,13, 2,12, 6,14)( 3, 9, 8,16, 4,10, 7,15)$ |
| $ 4, 4, 4, 4 $ | $64$ | $4$ | $( 1, 9, 6,15)( 2,10, 5,16)( 3,12, 7,13)( 4,11, 8,14)$ |
Group invariants
| Order: | $1024=2^{10}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |