Properties

Label 16T1251
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1251$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $7$
Generators:  (1,14,7,11,4,15,5,9,2,13,8,12,3,16,6,10), (1,7)(2,8)(3,6,4,5)(9,13,11,15)(10,14,12,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $D_{8}$, $QD_{16}$, $C_2^2:C_4$
32:  $C_4\wr C_2$, $C_2^3 : C_4 $, 16T26
64:  $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$, 16T163
128:  16T330
256:  16T682
512:  16T944

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $C_4$

Degree 8: $((C_8 : C_2):C_2):C_2$

Low degree siblings

16T1251 x 7, 32T36617 x 4, 32T36618 x 8, 32T36619 x 4, 32T36620 x 4, 32T36621 x 16, 32T36622 x 4, 32T36623 x 4, 32T36624 x 4, 32T36625 x 8, 32T36626 x 4, 32T57005 x 4, 32T57008 x 4, 32T70806 x 2, 32T70840 x 2, 32T71345, 32T71348

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $( 5, 6)( 7, 8)(13,14)(15,16)$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ $2$ $2$ $( 9,10)(11,12)(13,14)(15,16)$
$ 8, 8 $ $32$ $8$ $( 1, 7, 4, 5, 2, 8, 3, 6)( 9,13,12,16,10,14,11,15)$
$ 8, 8 $ $32$ $8$ $( 1, 5, 3, 7, 2, 6, 4, 8)( 9,16,11,13,10,15,12,14)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 7, 8)( 9,11)(10,12)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $16$ $2$ $( 1, 4)( 2, 3)( 5, 8)( 6, 7)(11,12)(13,14)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $8$ $2$ $( 3, 4)( 7, 8)( 9,12)(10,11)(13,15)(14,16)$
$ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $2$ $(13,14)(15,16)$
$ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $4$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)$
$ 4, 4, 4, 4 $ $8$ $4$ $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(13,15,14,16)$
$ 16 $ $64$ $16$ $( 1,14, 7,11, 4,15, 5, 9, 2,13, 8,12, 3,16, 6,10)$
$ 16 $ $64$ $16$ $( 1,15, 8,10, 4,13, 6,11, 2,16, 7, 9, 3,14, 5,12)$
$ 16 $ $64$ $16$ $( 1,11, 5,13, 3,10, 7,15, 2,12, 6,14, 4, 9, 8,16)$
$ 16 $ $64$ $16$ $( 1, 9, 6,15, 3,11, 8,14, 2,10, 5,16, 4,12, 7,13)$
$ 4, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $32$ $4$ $( 3, 4)( 5, 7)( 6, 8)(13,15,14,16)$
$ 4, 2, 2, 2, 2, 2, 1, 1 $ $32$ $4$ $( 1, 2)( 5, 8)( 6, 7)( 9,10)(11,12)(13,16,14,15)$
$ 4, 4, 2, 2, 2, 2 $ $32$ $4$ $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,13)(10,14)(11,15)(12,16)$
$ 4, 4, 4, 4 $ $16$ $4$ $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,16,10,15)(11,13,12,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2 $ $16$ $2$ $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,15)(10,16)(11,14)(12,13)$
$ 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $16$ $2$ $( 3, 4)(13,15)(14,16)$
$ 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $16$ $2$ $( 1, 2)( 5, 6)( 7, 8)( 9,10)(11,12)(13,16)(14,15)$
$ 4, 4, 2, 2, 2, 1, 1 $ $32$ $4$ $( 1, 4)( 2, 3)( 5, 8, 6, 7)( 9,12,10,11)(15,16)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $16$ $2$ $( 3, 4)( 5, 6)( 7, 8)(13,16)(14,15)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ $16$ $2$ $( 1, 2)( 9,10)(11,12)(13,15)(14,16)$
$ 4, 4, 2, 2, 2, 1, 1 $ $32$ $4$ $( 1, 4)( 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,14)$
$ 4, 4, 4, 2, 2 $ $64$ $4$ $( 1, 7, 4, 6)( 2, 8, 3, 5)( 9,13)(10,14)(11,15,12,16)$
$ 4, 4, 4, 2, 2 $ $64$ $4$ $( 1, 7, 3, 6)( 2, 8, 4, 5)( 9,15,10,16)(11,13)(12,14)$
$ 4, 4, 4, 4 $ $64$ $4$ $( 1,14, 6,10)( 2,13, 5, 9)( 3,15, 8,12)( 4,16, 7,11)$
$ 8, 8 $ $64$ $8$ $( 1,15, 6,11, 2,16, 5,12)( 3,13, 8,10, 4,14, 7, 9)$
$ 8, 8 $ $64$ $8$ $( 1,11, 5,13, 2,12, 6,14)( 3, 9, 8,16, 4,10, 7,15)$
$ 4, 4, 4, 4 $ $64$ $4$ $( 1, 9, 6,15)( 2,10, 5,16)( 3,12, 7,13)( 4,11, 8,14)$

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.