Properties

Label 16T1230
Order \(1024\)
n \(16\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group Yes

Related objects

Learn more about

Group action invariants

Degree $n$ :  $16$
Transitive number $t$ :  $1230$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $5$
Generators:  (1,16)(2,15)(3,13,4,14)(5,9,7,11)(6,10,8,12), (1,10,4,12,2,9,3,11)(5,14,7,15,6,13,8,16), (1,8,2,7)(3,6,4,5)(9,15,11,14,10,16,12,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 12, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 6, $C_2^2:C_4$ x 12, $C_4\times C_2^2$
32:  $C_2^2 \wr C_2$ x 4, $C_2^3 : C_4 $ x 4, $C_2 \times (C_2^2:C_4)$ x 3
64:  $((C_8 : C_2):C_2):C_2$ x 4, $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T76 x 2, 16T79, 16T146 x 2
128:  16T227 x 2, 16T240, 32T1151 x 2
256:  16T502, 16T532, 16T543
512:  64T?

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 8: $C_2^3: C_4$

Low degree siblings

16T1230 x 15, 32T36481 x 8, 32T36482 x 64, 32T36483 x 8, 32T36484 x 8, 32T36485 x 8, 32T36486 x 8, 32T36487 x 8, 32T36488 x 8, 32T48754 x 8, 32T50083 x 8, 32T50680 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 58 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1024=2^{10}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.